If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+40x-351=0
a = 1; b = 40; c = -351;
Δ = b2-4ac
Δ = 402-4·1·(-351)
Δ = 3004
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3004}=\sqrt{4*751}=\sqrt{4}*\sqrt{751}=2\sqrt{751}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-2\sqrt{751}}{2*1}=\frac{-40-2\sqrt{751}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+2\sqrt{751}}{2*1}=\frac{-40+2\sqrt{751}}{2} $
| 9(2x-4)+6=8x+18-2x | | 14x=4.9 | | 2.9x-3.9x=9.7 | | 1/3(6y-7)=5 | | 2(8=4x)32 | | 7/16=x/12 | | 5x+7=-2x+49 | | 8n^2+55n+42=0 | | -5x+8=-2x+5 | | 8.95+1.50c=26.95 | | 20-2b=2b | | 4t/5=32 | | 7/11=6/u | | 16(u+2)=8(u+4)+8u | | 4=0.25(z-4.3) | | (2x-8)(-2)=-24 | | 2x+20=5x+3 | | -2-13.8x=-8×(6x+1) | | 6608/n=28 | | 0.12x+240=5760 | | -y/3=-57 | | 36=-y/6 | | 8x=20x-60 | | -12-(-20x)=10(20x-60) | | 14=y10 | | -4(-2x-7)=-44 | | 24l-22=-4(1-6l) | | -128+32x=4x+56 | | 3m+2=m+m+3m | | 21/2(e-13/4)=51/2 | | x7x-3=25 | | 7x+6-3x=6 |